Generating Sequences and Key Polynomials
نویسندگان
چکیده
The main goal of this paper is to study the different definitions generating sequences appearing in literature. We present these and show that under certain situations they are equivalent. also an example shows not, general, relation key polynomials.
منابع مشابه
Tutte polynomials of wheels via generating functions
We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.
متن کاملtutte polynomials of wheels via generating functions
we find an explicit expression of the tutte polynomial of an $n$-fan. we also find a formula of the tutte polynomial of an $n$-wheel in terms of the tutte polynomial of $n$-fans. finally, we give an alternative expression of the tutte polynomial of an $n$-wheel and then prove the explicit formula for the tutte polynomial of an $n$-wheel.
متن کاملDucci-sequences and cyclotomic polynomials
We study Ducci-sequences using basic properties of cyclotomic polynomials over F2. We determine the period of a given Ducci-sequence in terms of the order of a polynomial, and in terms of the multiplicative orders of certain elements in finite fields. We also compute some examples and study links between Duccisequences, primitive polynomials and Artin’s conjecture on primitive roots. © 2005 Els...
متن کاملAutomatic sequences and generalised polynomials
We conjecture that bounded generalised polynomial functions cannot be generated by finite automata, except for the trivial case when they are periodic away from a finite set. Using methods from ergodic theory, we are able to partially resolve this conjecture, proving that any hypothetical counterexample is periodic away from a very sparse and structured set. In particular, we show that for a po...
متن کاملBarker Sequences and Flat Polynomials
A Barker sequence is a finite sequence of integers, each ±1, whose aperiodic autocorrelations are all as small as possible. It is widely conjectured that only finitely many Barker sequences exist. We describe connections between Barker sequences and several problems in analysis regarding the existence of polynomials with ±1 coefficients that remain flat over the unit circle according to some cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 2022
ISSN: ['0026-2285', '1945-2365']
DOI: https://doi.org/10.1307/mmj/20205953